
Getting Started with Netscape
JavaScript Debugger
Document last modified: 12/12/97.

This document gives a brief introduction to Netscape JavaScript Debugger 1.1.
JavaScript is a cross-platform, object-based scripting language. This version of
Netscape JavaScript Debugger allows you to debug client-side JavaScript code.
The debugger cannot be used to debug server-side JavaScript, Java, or HTML.

Netscape JavaScript Debugger requires Netscape Communicator 4.02 or later.
The debugger cannot be used with other browsers.

Note When you’re stopped in Netscape JavaScript Debugger, you cannot use many
features of Communicator. In particular, you cannot use Navigator to browse
web pages. For this reason, it is recommended that you download the PDF
version of this document before starting the debugger. You can then either
print that document or view it online with Acrobat Reader.

What’s in this document:

Section Starts on page

Starting the Debugger page 2

Understanding the Windows page 3

Opening a page to debug page 13

Working with Interrupts page 14

Working with Breakpoints page 15

Working with Watches page 19

Executing Code page 23

Displaying line numbers page 25

Clearing the Console Window page 25

Manually adjusting source lines page 26

Error Reporter Dialog page 26
Getting Started with Netscape JavaScript Debugger 1

Starting the Debugger
Starting the Debugger
The end of the installation process automatically runs the debugger. After that
first time, you run the debugger by opening the appropriate page in Navigator.
On Windows 95/NT, that page is:

[your Communicator install directory] \Program\JSDebug\JSDebugger.html

Here, [your Communicator install directory] is the directory in which
Communicator is installed. For example, if you installed it in
c:\Program Files\Netscape\Communicator\ , then the start page for
Netscape JavaScript Debugger would be:

c:\Program Files\Netscape\Communicator\Program\JSDebug\JSDebugger.html

On other platforms, that page is:

[your Communicator install directory] \JSDebug\JSDebugger.html

For future convenience, the first time you use the debugger, you should add
the JSDebugger.html page to your bookmarks or to your personal toolbar in
Navigator.

Note Several security dialog boxes are displayed the first time you run the debugger.
You must grant the security privileges the debugger requests in order for it to
function correctly.
2 Getting Started with Netscape JavaScript Debugger

Understanding the Windows
Understanding the Windows
The primary configuration of the JavaScript debugger windows is shown in
Figure 1.

Figure 1 JavaScript debugger configuration

The debugger window has a menu bar, a toolbar and (once you’ve opened an
HTML page) three panes. A Source View window is at the top; the Call Stack is
below the Source View and on the left; and the Console is below the Source
View and on the right.
Getting Started with Netscape JavaScript Debugger 3

Understanding the Windows
While stopped in the debugger, you can use commands from the Windows
menu open the Object Inspector, Breakpoint, and Watches windows.

Where To Find Commands

There are three common places to access the debugger’s commands: the menu
bar, the toolbar, and the right-click menu in a Source View window.

Most of the items that occur on menus also occur on the toolbar. In addition, if
you right-click in a Source View window over selected text, a menu of common
commands appears. These commands are also available on the menus and
some are on the toolbar.

Where applicable, the instructions in this document tell you how to use the
toolbar and the individual panes to access the debugger’s functionality. You
can also choose menu items (either from the menu bar or from the right-click
menu) for these tasks. When there is no button for a task, the menu item on the
menu bar is described.
4 Getting Started with Netscape JavaScript Debugger

Understanding the Windows
Source View Windows

The JavaScript debugger creates a separate Source View window, as shown in
Figure 2, for each HTML page you open in the debugger. (See “Opening a page
to debug” on page 13 for information on how you can open a page.)

Figure 2 Source View window

Each Source View window contains the source of an HTML page. When
execution stops in the debugger, the Source View window containing the
currently executing HTML page is brought to the surface.

Source View windows use colors and icons in the left margin to indicate the
following information:

• A dark arrow indicates a currently executing line

• Orange bars to the left indicate function bodies

• Yellow bars to the left indicate top-level scripts

• Red dots indicates lines for which unconditional breakpoints have been set

• Orange dots indicate lines for which conditional breakpoints have been set
Getting Started with Netscape JavaScript Debugger 5

Understanding the Windows
When execution is stopped, you can perform these actions in Source View
windows:

• Select text in a line in the standard way

• Highlight a word by double-clicking on the text

• Evaluate an expression. On Unix and Windows platforms, you do so by
right-clicking on the selection and choosing from the menu. On Macintosh
PowerPC, you do so by command-clicking on the selection and choosing
from the menu.

• Open the Object Inspector. This action is on the right-click or command
menu.

• Add or remove a breakpoint from the current line. This action is on the
right-click or command menu.

• Add the current selection to the Watch window. This action is on the right-
click or command menu.

• Copy the current selection to the clipboard. This action is on the right-click
or command menu.

• To refresh the Source View windows, from the File menu, choose
Refresh All. This also refreshes the Page List displayed when you select
Open. (The system automatically refreshes this window; you rarely need to
refresh manually.)
6 Getting Started with Netscape JavaScript Debugger

Understanding the Windows
Call Stack

The Call Stack, shown in Figure 3, displays the current execution location.

Figure 3 Call Stack window

If this window is not empty, you are currently stopped in the debugger.

• The most recent stack frame is displayed at the top of the Call Stack. Its
caller appears below it, and so on.

• A dark arrow in the margin points to the currently active stack frame.

• Select a line in the Call Stack to surface the Source View window for that
source and to set the active frame to that line.

Important If the Call Stack is not empty, that is, if you are stopped in the debugger, you
cannot use many features of Communicator. For example, while stopped in the
debugger you cannot open a page in Navigator.
Getting Started with Netscape JavaScript Debugger 7

Understanding the Windows
Console

The console, shown in Figure 4, is active only while JavaScript execution is
stopped.

Figure 4 Console window

The console is divided into two parts:

• The top part shows information displayed by the watch mechanism and the
result of expressions you evaluate while stopped in the debugger.

• The bottom part is an input window in which you can type JavaScript
expressions. These expressions are evaluated in the context of the currently
active frame.

When execution is stopped, you can have the debugger evaluate the current
selection in a Source View window. To do so, on Windows and Unix you right-
click on the selection. On Macintosh PowerPC, you command-click on it. On
any system, a menu appears from which you can choose Evaluate. The result is
displayed in the Console window. You can also click the Eval button on the
toolbar to evaluate the current selection.
8 Getting Started with Netscape JavaScript Debugger

Understanding the Windows
Page List

The Page List, shown in Figure 5, appears when you click the Open button. It
contains a list of all pages you have opened in Navigator since starting the
debugger. The pages are sorted with the most recently opened listed first.

Figure 5 Page List

If you open the Page List while execution is stopped in the debugger, the page
being debugged is highlighted in the list. If execution is not stopped, the
highlighted page is not significant.

To refresh the Page List, from the File menu, choose Refresh All. This also
refreshes Source View windows.
Getting Started with Netscape JavaScript Debugger 9

Understanding the Windows
Object Inspector

The Object Inspector, shown in Figure 6, lets you inspect and work with the
property values of an object. If a property value is itself an object, the inspector
lets you see that object’s property values and so on.

Figure 6 Object Inspector

The Object Inspector is divided into three sections:

• The top line initially shows the object being inspected.

This area is similar to the input line in the console. You can type JavaScript
expressions on this line. When you press Return or choose Inspect,
JavaScript evaluates the expression and inspects the result, updating the
main table.

• The main table shows the properties and values for expression being
inspected.

A plus sign to the left of a property name indicates that the value is an
object and that the object’s properties are not currently shown. A minus

sign to the left of a property name indicates that the value is an object
and that the object’s properties are currently shown. You can click the plus
and minus icons to expand and contract the property values.

If you double-click on a line in this table, the property value on that line
becomes the new value being inspected. For example, in Figure 6, if you
double-click on the line for the clip property, the top line becomes
document.layers.formlayer.clip and that object is inspected.
10 Getting Started with Netscape JavaScript Debugger

Understanding the Windows
• The command buttons to the right allow you to perform various actions.

— Inspect evaluates the expression currently in the top line and inspects
the result.

— Eval evaluates the expression currently in the top line without changing
what is being inspected.

— Add Watch adds the expression currently in the top line to the Watch
window. For information on the Watch window, see “Working with
Watches” on page 19.

— Copy Name copies to the clipboard the property name of the line
selected in the main table. This lets you copy this information between
parts of the debugger or to other applications.

— Copy Value copies to the clipboard the property value of the line
selected in the main table.

— Done dismisses the Object Inspector.

The Object Inspector is a powerful tool for examining the current state of your
JavaScript objects.
Getting Started with Netscape JavaScript Debugger 11

Understanding the Windows
Breakpoint Window

The Breakpoint window, shown in Figure 7, allows you to manipulate
breakpoints. For information on breakpoints, see “Working with Breakpoints”
on page 15.

Figure 7 Breakpoint window

Watches Window

The Watches window, shown in Figure 8, lets you manipulate watches. For
information on watches, see “Working with Watches” on page 19.

Figure 8 The Watches window.
12 Getting Started with Netscape JavaScript Debugger

Opening a page to debug
Opening a page to debug
There are two ways to open a page you want to debug. The simplest method is
as follows:

1. In the debugger, click the Intrpt button.

This sets an interrupt. (See “Working with Interrupts” on page 14 for
information about interrupts.)

2. In Navigator, load the page you want to debug.

Navigator starts loading the page. As soon as it encounters JavaScript code
on the page, it stops execution and opens a Source View window
containing the HTML source for that page.

Alternatively, you can do the following:

1. In Navigator, open the page you want to debug.

2. Click the Open button on the debugger toolbar.

The Page List window appears containing a list of the pages you have
opened in Navigator since starting the debugger. The pages are sorted with
the most recently opened listed first.

3. Select the page you want to open in the debugger and click Open to
display the page in a Source View window.

4. Set a breakpoint in the code where you want the interpreter to stop and
activate the debugger. (See “Working with Breakpoints” on page 15 for
information on setting breakpoints.)

5. In Navigator, reload the page to start debugging.
Getting Started with Netscape JavaScript Debugger 13

Working with Interrupts
Working with Interrupts
Setting an interrupt tells the JavaScript interpreter to halt execution as soon as it
can. If JavaScript code is running when you set the interrupt, the interpreter
immediately halts execution and activates the debugger. If JavaScript code is
not running when you set the interrupt, the interpreter waits until JavaScript
code executes. At that time, the interpreter halts and activates the debugger.

You can set an interrupt for two major purposes:

• Initiate debugging

Set an interrupt when JavaScript code is not running and then load a page
in Navigator that contains JavaScript. This is the simplest way to start
debugging a particular page containing JavaScript code.

• Debug running code

Set an interrupt while the interpreter is executing JavaScript code. The
interpreter immediately stops. For example, if you’ve somehow managed to
get an infinite loop into your code, setting an interrupt while executing the
code could let you see where the problem is.

To toggle an interrupt

• Click the Intrpt button on the toolbar.

If the Intrpt button is depressed, then an interrupt has been set. If the
button is not depressed, an interrupt has not been set. Clicking the button
toggles between these states.
14 Getting Started with Netscape JavaScript Debugger

Working with Breakpoints
Working with Breakpoints
A breakpoint is a specific location at which program execution is halted so that
you can review the program’s status up to that point. You set a breakpoint on a
particular line of code. When execution reaches that line of code, the JavaScript
interpreter stops and activates the debugger.

Breakpoints can either be unconditional or conditional. With an unconditional
breakpoint, when the interpreter reaches the line of code, it always stops and
activates the debugger. With a conditional breakpoint, when the interpreter
reaches the line of code, it evaluates the condition (a JavaScript expression). If
that expression returns true , then the interpreter activates the debugger. If the
expression returns any value other than true , the interpreter does not activate
the debugger.

As you select items in the Source View, the state of the BrkPt button changes.

• If there is no selection, the button is grayed.

• If there is a breakpoint set for the current selection currently, the button is
depressed.

• If there is not a breakpoint set for the current selection currently, the button
is not depressed.

You can manipulate breakpoints in the Breakpoint window, shown in Figure 7.

The breakpoints you set in one debugger session are saved with the debugger.
The next time you start the debugger, the same breakpoints are automatically in
effect.

To toggle a breakpoint

Do one of the following:

• In the Source View window, click to the left of the line (in the whitespace)
where you want to set or remove a breakpoint.

• Select text in the Source View window and toggle the BrkPt button on the
toolbar or use the right-button menu.
Getting Started with Netscape JavaScript Debugger 15

Working with Breakpoints
• In the Breakpoint window, choose New or Delete to manually enter or
remove breakpoints.

When you set a breakpoint, a red dot appears by the line in the margin of the
Source View window, indicating an unconditional breakpoint. When you
remove a breakpoint, the dot disappears.

You can set a breakpoint either when execution is stopped or while JavaScript
code is running. If execution is stopped when you set a breakpoint, you can
restart execution by clicking the Run button in the debugger.

To manually add a breakpoint
You may wish to add a breakpoint to a line of code without first opening the
file in a Source View window. In general, because you do not have to manually
type the URL and the line number, it is much easier to add breakpoints through
a Source View window. However, if you know precisely where the breakpoint
should occur, follow these steps:

1. From the Windows menu, choose Breakpoints.

The Breakpoint window appears.

2. Choose New to create a new breakpoint.

The Edit Breakpoint dialog, shown in Figure 9, appears.

3. In the line text box, enter the line number of the breakpoint.

4. In the url text box, enter the complete URL of the file.

You need to enter the URL exactly.

5. If the breakpoint is to be conditional, add the condition in the condition
text box.

Conditional breakpoints are discussed in “To edit a breakpoint’s condition”
on page 17.
16 Getting Started with Netscape JavaScript Debugger

Working with Breakpoints
Figure 9 New Breakpoint dialog box

To edit a breakpoint’s condition
Any breakpoint can be made into a conditional breakpoint by editing its
condition as follows:

1. Select the line in the Source View window which holds the breakpoint.

2. From the Control menu, choose Edit Breakpoint.

A dialog box appears in which you can edit the condition expression.
When this dialog first appears, the condition is true . This means “always
stop”. You can enter any JavaScript expression as the condition.

Instead of using a Source View window to select the breakpoint to edit, you
can select the breakpoint in the Breakpoint window and choose Edit.

Whichever method you choose, the same dialog box, shown in Figure 10,
appears.

Figure 10 Editing a breakpoint

When you make a breakpoint conditional, the red dot by the line in the margin
of the Source View window becomes orange. When you remove the
breakpoint, the dot disappears.
Getting Started with Netscape JavaScript Debugger 17

Working with Breakpoints
When the interpreter evaluates the condition expression, it provides no
automatic feedback. Any errors in the condition expression are ignored and
discarded by the interpreter.

The interpreter stops execution and activates the debugger only when the
expression evaluates to true .

Note The condition expression must literally evaluate to true . If it evaluates to
anything else (such as 0, false , 1, or "Success"), the interpreter does not
activate the debugger.

Conditional Breakpoint Examples
The following are simple examples of condition expressions.

• Halt if the value of the variable x is either greater than or equal to 5 or its
value is -1 :

x >= 5 || x == -1

• Halt when a particular URL is reached:

document.URL == "http://warp/index.html"

• Halt if my_var has a value:

my_var != null

You can use conditional breakpoints in other situations. For example, you may
want to log information to the Java console each time a line of code is
executed, but not stop on that line. To do so, use an expression similar to the
following:

(java.lang.System.out.println(“myFunction called with x = " + x)) &&
false

With this condition, the debugger always prints to the console, but does not
stop since the entire expression returns false.

A similar situation would be to log information every time the code is executed
but activate the debugger only if the value of prop.lengt h is 5. To do so, use
this expression:

(java.lang.System.out.println(“myFunction called with x = " + x)),
prop.length == 5
18 Getting Started with Netscape JavaScript Debugger

Working with Watches
You can also use a conditional breakpoint to change values at runtime.
Consider the following expression:

(x == -1) && (x = 0) && false

When the interpreter executes the line of code that contains that condition, it
first checks to see if the value of x is -1. If so, it sets the value of x to 0. The
interpreter does not stop for this condition, since it always returns false .

Working with Watches
A watch is an expression you enter that the interpreter automatically evaluates
each time the interpreter stops and activates the debugger. The evaluation
occurs for breakpoints, interrupts, or steps. You use the Watches window,
shown in Figure 8, to manipulate watches. The Watches window displays the
current list of watch expressions and allows you to manipulate the list and edit
the items in the list.

You can set as many watch expressions as you like. The interpreter evaluates
them in the order in which they occur in the Watches window. The interpreter
displays each watch expression and its output in the Console.

Watch expressions are not specific to a particular page. They are evaluated
every time the debugger is activated for any page, regardless of the page from
which you set the watch.

The watches you set in one debugger session are saved with the debugger. The
next time you start the debugger, the same watches are automatically in effect.
Getting Started with Netscape JavaScript Debugger 19

Working with Watches
To add a new watch

You can add a new watch to the list in three ways.

To add text from a Source View window:

1. In a Source View window, select the text you want to add.

2. From the Edit menu, choose Copy to Watch.

This adds the selected text as the last item in the Watches window. It also
causes the interpreter to evaluate all items in the Watches window.
Choosing Copy to Watch does not, however, bring the Watches window to
the surface.

3. From the Windows menu, choose Watches.

The Watches window appears. From there you can perform other
operations on the watch expressions.

To add text from the Object Inspector:

1. Choose Add Watch.

This adds the text currently in the top line of the inspector as the last item
in the Watches widow. It also causes the interpreter to evaluate all items in
the Watches window. Choosing Copy to Watch does not, however, bring
the Watches window to the surface.

2. From the Windows menu, choose Watches.

The Watches window appears. From there you can perform other
operations on the watch expressions.

If you want to create a watch expression from scratch, do the following:

1. From the Windows menu, choose Watches.

The Watches window appears.

2. Click the New button.

The New Watch dialog appears.
20 Getting Started with Netscape JavaScript Debugger

Working with Watches
3. Enter an expression in the New Watch dialog and click OK.

Clicking OK confirms the change; if you want to discard the new watch,
choose Cancel. If you clicked OK, the new watch expression is added as
the last expression in the Watches window.

4. Click the Done button to indicate that you are finished making changes to
the watches.

The Watch window disappears.

To edit a watch expression

1. From the Windows menu, choose Watches.

The Watches window appears.

2. In the Watches window, select the watch expression you want to edit.

3. Click the Edit button.

The Edit Watch dialog appears.

4. Make the necessary changes and click OK to confirm the changes or Cancel
to discard them.

5. Click the Done button to indicate that you are finished making changes to
the watches.

The Watch window disappears.

To delete a watch

1. From the Windows menu, choose Watches.

The Watches window appears.

2. In the Watches window, select the watch expression you want to delete.

3. Click the Delete button.

The selected expression disappears from the Watch window. There is no
undelete.
Getting Started with Netscape JavaScript Debugger 21

Working with Watches
4. Click the Done button to indicate that you are finished making changes to
the watches.

The Watch window disappears.

To change the evaluation order

The expressions in the Watch window are evaluated from top to bottom. To
move a watch expression, do the following:

1. From the Windows menu, choose Watches.

The Watches window appears.

2. In the Watches window, select the watch expression you want to move.

3. Click the Move Up button to move the expression earlier in the order. Click
the Move Down button to move the expression later in the order.

4. Click the Done button to indicate that you are finished making changes to
the watches.

The Watch window disappears.

To evaluate all watches

To immediately evaluate all watches:

1. From the Windows menu, choose Watches.

The Watches window appears.

2. Click the Evaluate button.

The interpreter evaluates all watch expressions, displaying the expression
and its result in the Console.

3. Click the Done button to indicate that you are finished working with the
watches.

The Watch window disappears.
22 Getting Started with Netscape JavaScript Debugger

Executing Code
Executing Code
The debugger provides several commands for executing sections of code.
When stopped in the debugger, you have several options for how you execute
code:

• You can continue execution and stop only when a breakpoint is reached.

• If the statement at which you’re stopped is a function call, you can execute
the individual statements of the function. (This is stepping into the function.)

• If the statement at which you’re stopped is a function call, you can execute
the entire function at once and stop after it returns. (This is stepping over the
function.)

• If the statement at which you’re stopped is inside a function call (instead of
at the top level of the script), you can execute the rest of the containing
function at once and stop after it has been executed. (This is stepping out of
the function.)

• If the statement at which you’re stopped is not a function call, stepping into
and stepping over both simply execute that single statement. Stepping out
continues execution until the next breakpoint.

• You can choose to skip executing the rest of the script and continue loading
the HTML page after that script. (This is aborting execution.)

The following sections tell you how to perform these actions.

To continue execution

When stopped in the debugger, you may want to continue execution from the
current statement and stop only when a breakpoint is reached. To do so:

• Click the Run button on the toolbar.
Getting Started with Netscape JavaScript Debugger 23

Executing Code
To “step into” function calls

When stopped in the debugger, if the line you’re stopped at is itself a function
call, you may want to execute the individual statements in the function call. To
execute the first statement inside the function call and then stop, do the
following:

• Click the Into button on the toolbar at the location you want to begin.

To “step over” function calls

When stopped in the debugger, if the line you’re stopped at is itself a function
call, you may want to execute the entire function and stop execution after the
function returns. In this case, you do not step through the individual statements
in that function call. To do so:

• Click the Over button on the toolbar at the location you want to begin.

To “step out” of a function call

When stopped in the debugger, if the line you’re stopped at is inside a function
call, you may want to execute the rest of the statements in that function call and
stop after the function returns. In this case, you do not step through the rest of
the statements in that function call. To do so:

• Click the Out button on the toolbar at the location you want to begin.

To execute a single statement

When stopped in the debugger, if the line you’re stopped at is not a function
call, you can execute that single statement. You can do either of the following:

• Click the Into button on the toolbar at the location you want to begin.

• Click the Over button on the toolbar at the location you want to begin.
24 Getting Started with Netscape JavaScript Debugger

Displaying line numbers
To terminate a function call

When stopped in the debugger, you may want to terminate the current function
and continue execution after it. To do so:

• Click the Abort button on the toolbar.

Displaying line numbers
To toggle between displaying and hiding line numbers:

1. From the Edit menu, choose Preferences.

2. From that submenu, choose Show Line Numbers or Hide Line Numbers.

Clearing the Console Window
If you work with the console window for an extended period, it can contain a
lot of information, making it difficult to find lines you’re interested in. You may
want to clear that window to make it easier to see what is later added.

To clear the console window:

• From the Edit menu, choose Clear Console.

This does not change the state of the debugger, it simply erases the content of
the console.
Getting Started with Netscape JavaScript Debugger 25

Manually adjusting source lines
Manually adjusting source lines
There might be cases where the marks in the left column are not correctly
aligned with the actual source. To manually adjust these marks:

1. Right-click (on Windows or Unix) or command-click (on Macintosh) in the
left column at the point you want to start the adjustment.

2. Move the mouse (while continuing to hold down the mouse button) up or
down.

A + or - sign appears to indicate where the adjustments have been made,
and in which direction.

You can reset the manual adjustments by Alt-clicking in the left column.

Error Reporter Dialog
The Error Reporter dialog displays information about syntax errors and runtime
errors in your JavaScript code.

The Error Reporter dialog contains OK, Debug, and Pass On buttons.

• The OK button discards the error and continues execution.

• The Debug button activates the debugger.

• The Pass On button passes the error along to the normal error handling
mechanisms in Navigator. This might bring up the error dialog or call the
page’s onerror() handler, if it has one.
26 Getting Started with Netscape JavaScript Debugger

	Getting Started with Netscape JavaScript Debugger
	Starting the Debugger
	Understanding the Windows
	Where To Find Commands
	Source View Windows
	Call Stack
	Console
	Page List
	Object Inspector
	Breakpoint Window
	Watches Window

	Opening a page to debug
	Working with Interrupts
	To toggle an interrupt

	Working with Breakpoints
	To toggle a breakpoint
	To manually add a breakpoint
	To edit a breakpoint’s condition
	Conditional Breakpoint Examples

	Working with Watches
	To add a new watch
	To edit a watch expression
	To delete a watch
	To change the evaluation order
	To evaluate all watches

	Executing Code
	To continue execution
	To “step into” function calls
	To “step over” function calls
	To “step out” of a function call
	To execute a single statement
	To terminate a function call

	Displaying line numbers
	Clearing the Console Window
	Manually adjusting source lines
	Error Reporter Dialog

